Abstract
A three-dimensional graphene oxide/carbon nanotubes-COOH hybrid (GO/CNTs-COOH) consisted of two-dimensional graphene oxide (GO) and one-dimensional carbon nanotubes-COOH (CNTs-COOH) was synthesized. The GO/CNTs-COOH hybrid exhibited excellent water-solubility owing to the high hydrophilicity of GO components and the carboxylation of carbon nanotubes. The cobalt hexacyanoferrate decorated GO/CNTs-COOH (CoHCF/GO/CNTs-COOH) has been prepared using electrostatic adsorption of Co2+ on GO/CNTs-COOH and K4[Fe(CN)6] as an in-situ chemical precipitant. FT-IR, Raman spectroscopy, TEM, SEM, and cyclic voltammetry were utilized to characterize the nanohybrid. The electrochemistry behavior of hydrazine on different modified electrodes was also studied. The CoHCF/GO/CNTs-COOH modified GCE (CoHCF/GO/CNTs-COOH/GCE) exhibited greatly enhanced electrocatalytic performance towards electro-oxidation of hydrazine. The oxidation peak currents showed good linear relationships with concentration of hydrazine. It can be applied to detect hydrazine in samples sensitively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.