Abstract

We synthesized cobalt- (Co-) doped C60nanowhiskers (NWs) by applying a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and 2-propanol with Co nitrate hexahydrate (Co(NO3)3⋅6H2O). Heating the NWs at 873–1173 K produced carbon nanocapsules (CNCs) that encapsulated Co clusters with a hexagonal-closed-packed structure. After heating at 1273 K, the encapsulated Co clusters in CNCs were transformed into orthorhombic Co2C clusters. It was found that Co- and Co2C-encapsulated CNCs can be produced by varying heating temperature.

Highlights

  • Carbon nanocapsules (CNCs), which are hollow multiwalled graphitic nanoparticles, exhibit high chemical and thermal stabilities [1–8]

  • Fullerene NWs have been synthesized by liquid-liquid interfacial precipitation (LLIP) methods

  • We demonstrate the synthesis of Co-doped C60 NWs and carbon nanocapsules (CNCs) encapsulating Co-based clusters

Read more

Summary

Introduction

Carbon nanocapsules (CNCs), which are hollow multiwalled graphitic nanoparticles, exhibit high chemical and thermal stabilities [1–8]. The encapsulation of metallic and carbide clusters in CNCs leads to the formation of catalysts and drug delivery components [4, 9–17]. Such pristine and encapsulated CNCs have been synthesized by arc discharge, chemical vapor deposition, electron irradiation, and thermal decomposition [1, 3–5, 9, 11, 13–15]. It is expected that the alloying of CNCs and metals can be performed using such metal-doped fullerene NWs. Some of magnetic materials, for example, cobalt (Co) and iron, form solid solutions with carbon. It is expected that various systems with crystal structures, solid solutions, and intermetallics are combined with CNCs. In this study, we demonstrate the synthesis of Co-doped C60 NWs and CNCs encapsulating Co-based clusters

Method
Results and Discussion
15 Graphene
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.