Abstract

In order to overcome the disadvantages of low electrical conductivity and pulverization of Co3O4 anode material, a novel Co3O4/nitrogen-doped carbon composite (Co3O4/N-C) was prepared by annealing a cobalt-based metal-organic framework (MOF) precursor. In this Co3O4/N-C composite, the Co3O4 particles are dispersed uniformly in the matrix of the nitrogen-doped carbon with an average diameter of approximately 10 nm and a mass content of 22.6%. This approach has the advantages that first, the dispersed Co3O4 nanoparticles could increase the lithium ions storage capacity and alleviate the electrode pulverization during the lithium ions insertion/extraction processes; second, the nitrogen-doped carbon material could increase the electrical conductivity of the electrode material and meanwhile serve as a buffer to relieve the structure collapse induced by the large volume change. The as-prepared Co3O4/N-C composite maintains a high reversible discharge capacity of 423 mAhg−1 after 100 cycles at the current density of 100 mAg−1, which is 129% times higher than that of the contrastive nitrogen-doped carbon material. Moreover, this strategy was verified to be effective to produce other transition metal oxides/carbon composite for improving the performance of LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.