Abstract

Co‐doped CdS (Co:CdS) nanocrystals with controllable morphology (quantum dots and nanorods) were easily synthesized by direct thermolysis of (Me4N)2[Co4(SC6H5)10] and (Me4N)4[S4Cd10(SPh)16] under different precursor concentration, in virtue of the ions exchange of molecular clusters. The Co:CdS quantum dots were produced under low precursor concentration, and the Co:CdS nanorods could be obtained under higher precursor concentration. The Co‐doping effect on the structure, growth process, and property of CdS nanocrystals was also investigated. The results indicated that the Co‐doping was favorable for the formation of the nanorod structures for a short reaction time. In addition, the Co‐doping in the CdS lattice resulted in the ferromagnetic property of the Co:CdS quantum dots at room temperature. Moreover, compared with the CdS quantum dots, the Co:CdS quantum dots exhibited obvious quantum confinement effect and photoluminescence emission with slightly red‐shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.