Abstract

The hybrid supercapacitor combines the outstanding energy density characteristics of batteries with the remarkable durability and unique power characteristics of supercapacitors (SCs). Herein, a hydrothermal technique was applied to produce nickel-copper sulfide (NiCuS), which was later physically embedded into carbon nanotubes. In this study, a three and two electrode measurement systems were studied. To confirm the battery type nature of the electrode materials, a three-electrode assembly was used. For hybrid device, a two-electrode measurement scheme was employed. In the three-electrode setup, the NiCuS@CNT composite revealed a superior specific capacity (Qs) of 1110.0 C g−1. The NiCuS@CNT//AC nanocomposite based hybrid device established a remarkable Qs of 620.9 C g−1. Additionally, the NiCuS@CNT//AC exhibited a remarkable energy density (Ed) of 29.5 Wh kg−1 and a power density (Pd) of 2165.0 W kg−1.This composite material is distinguished for its remarkable capacity retention, maintaining an amazing 88.2% of its capacity after 8000 cycles. This emphasizes its continued stability and the possibility of having a longer operating lifespan. By advancing energy storage technologies, this dynamic integration might provide brand-new, exciting opportunities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.