Abstract

AbstractGoethite, lepidocrocite, magnetite and akaganeite were synthesized in 0.8 M, 2 M and 5 M NaCl solutions at various temperatures (25, 40, 60°C) under slightly acidic to slightly alkaline pH with or without Si additions. Elevated temperatures prevent complete oxidation of initial Fe2+ solutions and magnetite and siderite precipitate, accompanied by goethite and lepidocrocite. At higher salinity, O2 solubility is reduced and its distribution is limited, leading to coprecipitation of lepidocrocite, akaganeite and goethite.Lepidocrocite morphology changes from plates at pH 5.5 through rods at pH 7 to multi-domainic crystals at pH 8.2, due to enhanced crystal growth along the c axis. Salinity and temperature have opposite effects on lepidocrocite crystallinity.Goethite crystals are multi-domainic and twinning appears only at elevated temperatures. Increases in temperature and salinity improve goethite crystallinity as observed by IR spectra. Addition of Si up to Si/Fe = 0.1 retards crystal growth and Si-OH-stretching bands appear. At Si/Fe = 1 most of the precipitate is short range ordered.Platy and rod-shaped lepidocrocite from the Thetis and Atlantis II Deeps, were probably formed under the slightly acidic conditions of the hydrothermal brines. The Si concentration was greater in Atlantis II Deep than in Thetis Deep, leading to larger lepidocrocite and goethite crystals in the latter.Multi-domainic goethite could have precipitated throughout. Pure phase goethite might have precipitated in the less concentrated brine, whereas mixtures of goethite and lepidocrocite might have precipitated in the more concentrated brine, depending mainly on oxidation rate and oxygen mobility within the brine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.