Abstract

The stereoselective synthesis of chlorotrifluoromethylated pyrrolidines was achieved using anodically coupled electrolysis, an electrochemical process that combines two parallel oxidative events in a convergent and productive manner. The bench-stable and commercially available solids CF3 SO2 Na and MgCl2 were used as the functional group sources to generate CF3. and Cl. , respectively, via electrochemical oxidation, and the subsequent reaction of these radicals with the 1,6-enyne substrate was controlled with an earth-abundant Mn catalyst. In particular, the introduction of a chelating ligand allowed for the ene-yne cyclization to take place with high stereochemical control over the geometry of the alkene group in the pyrrolidine product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call