Abstract

Herein, we report the synthesis of copper nanoparticles at ambient conditions using biopolymer, chitosan, as a protecting and stabilizing agent and hydrazine as a reducing agent. The obtained nanoparticles (CS-Cu NPs) were characterized using XRD, FT-IR, FE-SEM, EDS, TEM and UV–Vis spectroscopy. This nanocomposite was utilized as an efficient heterogeneous nanocatalyst for the aryl and heteroaryl C–N and C–O cross coupling reactions with excellent yields at mild conditions. The nanocatalyst were isolated and reused for 10 times with reproducible catalytic activity. Cell viability of nanocomposite was very low against bladder cancer (UM-UC-3 (Transitional cell carcinoma), SCaBER (Squamous cell carcinoma), and TCCSUP (Grade IV, transitional cell carcinoma)) cell lines without any cytotoxicity on the normal cell line. The best anti-human bladder cancer properties of nanocomposite against the above cell lines was in the case of TCCSUP cell line. According to the above findings, the nanocomposite may be administrated for the treatment of several types of human bladder cancer in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call