Abstract

Enantiomerically pure alpha-hydroxy amides have been prepared from the corresponding alpha-oxo esters by the use of a double sequence reaction involving in a first step the highly enantioselective Saccharomyces cerevisiae bioreduction and then in a second step, the resulting alpha-hydroxy esters followed a non-enantiospecific lipase catalyzed aminolysis with n-butylamine reaction. In the first non-organic solvent process, the moistened baker's yeast reduced seven alpha-oxo esters with high conversions degree (93% for one substrate and >99% for the others) and high enantioselectivities [>99% for all the substrates except for ketopantoyl lactone, which gave 88% of enantiomeric excess (ee)]. At the same way, the isolated resulting chiral alpha-hydroxy esters were subjected to the second Candida antarctica lipase fraction B (CAL-B) catalyzed aminolysis in dioxane conducting to the corresponding chiral alpha-hydroxy amides with high conversions degree, between 88 and 99%. Both processes were carried out at 28-30 degrees C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.