Abstract

In the current research, NiAl2O4, NiAl1.98Bi0.02O4 and NiAl1.98Ce0.02O4 are fabricated by the sol-gel method. Doping of larger ions (Ce3+ and Bi3+) into smaller aluminium ion lattice increased the lattice constant from 8.0091Å to 8.9732Å and 8.0272Å respectively. XPS spectra of NiAl1.98Ce0.02O4 confirmed the existence of Ce ion in Ce3+ and Ce4+. Spherical shaped particles with visible pores are noticed in the Transmission Electron Microscopy (TEM). The bandgap of the tailored materials has decreased to 2.25eV and 2.98eV and increased the catalytic efficiency due to the decrease in electron-hole pair recombination rate. The photocatalytic efficiency of the materials was tested against methylene blue (MB), methyl orange (MO) and rhodamine B (RhB) dyes. In the case of MB degradation, the efficiency of nickel aluminate (0.5mg/mL) was 54% under UV light irradiation after 60min, which was increased to 94% and 89% through cerium doped and bismuth doped nickel aluminate catalyst respectively. A drastic increase from 31% to 94% (NiAl1.98Ce0.02O4) and 91% (NiAl1.98Bi0.02O4) was noticed against MO degradation. Doping of cerium and bismuth in nickel aluminate enhanced the photocatalytic activity against the selected coloured organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.