Abstract

Based on a few noteworthy features, cerium oxide nanoparticles have gained significance in nanotechnology. The effective microwave combustion method (MCM) and the conventional sol–gel (CRSGM) technologies are used in this study to successfully generate the crystalline CeO2 nanoparticles (NPs). Additionally, using a variety of spectroscopic and analytical methods, the synthesized CeO2 NPs are examined to assess to understand their structure and morphology. The XRD patterns of CeO2 NPs show that the structure exhibits a face-centered cubic lattice. Then, with demonstrated good conversion and selectivity, the impact of the epoxidation reaction of cyclohexene was examined. Finally, it can be said that using CeO2 nanoparticles is an efficient strategy to increase the catalytic activity toward the epoxidation reaction of cyclohexene. In the presence of acetonitrile as a solvent and H2O2 as an oxidant, the catalyst samples utilized in the cyclohexene epoxidation reaction were examined. In this study, the CeO2 catalyst outperformed all other catalysts in terms of cyclohexene maximal conversion and selectivity. After six prolonged cycles, the conversion of cyclohexene oxidation using CeO2 NPs shows reasonable recyclability and conversion efficiency, making it the best catalyst for an industrial production application.Additionally, the upgraded CeO2 nanoparticle electrode for nitrite detection has a linear concentration range (0.02–1200 M), a low detection limit (0.22 M), and a higher sensitivity (1.735 A M−1 cm−2). CeO2 NPs, on the other hand, have a quick response time, excellent sensitivity, and high selectivity. Additionally, the manufactured electrode is used to find nitrite in various water samples. Finally, it can be said that using CeO2 NPs is an efficient strategy to increase the catalytic activity toward cyclohexene oxidation and nitrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call