Abstract

Cellulose is the most abundant bio-renewable materials with a long and well established technological base products and important applications such as fiber and paper materials. The one dimensional nano-materials such as nanotubes, nanowires and nano-rods have been widely studied for their potential applications in the field of nano-devices and nano-sensors due to their excellent electronic, optical properties. In this present work, the homogeneous cellulose-L-tyrosine-silica hybrid materials is prepared by in-situ sol-gel process using TEOS and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent. The silica nano-materials could be attached to the surface of amino functionalized cellulose-L-tyrosine matrices. The covalent bonding behavior of silica were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and transmission electron Microscopy (TEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.