Abstract

Luminescent CdTe quantum dots (QDots) have been synthesized through a low-temperature process employing a heterogeneous reaction between cadmium acetate and tri-n-octyl phosphine tellurium (TOPTe) in the presence of tri-n-octyl phosphine oxide (TOPO). UV-visible absorption spectra revealed that monodispersed CdTe QDots were synthesized at 70 °C for 240 min. The as-synthesized CdTe QDots exhibited photoluminescence (PL) with a narrow spectral distribution (FWHM∼41 nm). Highly luminescent CdTe QDots with PL quantum yield (QY) up to ∼33% were size selected from the ensemble. X-ray and electron diffraction measurements revealed that CdTe crystallized in a wurtzite-type structure at 70 °C. High-resolution transmission electron microscopic measurements revealed that the CdTe particles were of regular spherical morphology with an average diameter of ∼2.8 nm. The present experiment demonstrates, in addition to an advantage in green chemistry, that a low-temperature process allows an extended period of time for crystallization that is useful for synthesizing defect-free QDots with higher PL QY.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call