Abstract

A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe–pepsin complex. Based on the fluorescence quenching results, the Stern–Volmer quenching constant ( K sv), binding constant ( K A) and binding sites ( n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance ( r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call