Abstract
The cadmium sulfide nanoparticle-reduced graphene oxide (CdS/RGO) nanocomposite with intimate nano-interfacial contact was successfully prepared via a facile condensation process in dilute dimethylformamide (DMF) aqueous solution. Numerous CdS nanoparticles featuring a size of around 10 nm were homogeneously anchored on 2D nanosheets. During the formation of CdS/RGO nanocomposite, graphene oxide (GO) was transformed into RGO simultaneously. The solar-driven degradation of Rhodamine B (RhB) was conducted to detect the activity of the as-prepared CdS/RGO nanocomposite. Significantly, the photocatalytic activity of CdS/RGO nanocomposite was almost three times higher than that of pure CdS. The charge transfer and photogenerated active hydroxyl radicals (⋅OH) were investigated to study the mechanism of excellent photocatalytic property. The synthetic method provided a valuable opportunity to fabricate large-scale novel graphene-based materials with superior catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.