Abstract

Nanocomposites with one-dimensional (1D) and two-dimensional (2D) phases can demonstrate superior hardness, fracture toughness, and flexural strength. Cubic boron nitride-hexagonal boron nitride-silicon carbide whiskers (cBN-hBN-SiCw) nanocomposites with the simultaneous containing 1D SiCw and 2D hBN phases were successfully fabricated via the high-pressure sintering of a mixture of SiCw and cBN nanopowders. The hBN was generated in situ via the limited phase transition from cBN to hBN. Nanocomposites with 25 wt.% SiCw exhibited optimal comprehensive mechanical properties with Vickers hardness of 36.5 GPa, fracture toughness of 6.2 MPa·m1/2, and flexural strength of 687.4 MPa. Higher SiCw contents did not significantly affect the flexural strength but clearly decreased the hardness and toughness. The main toughening mechanism is believed to be a combination of hBN inter-layer sliding, SiCw pull-out, crack deflection, and crack bridging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.