Abstract

We developed a model to represent the time evolution phenomena of life through physics constraints. To do this, we took into account that living organisms are open systems that exchange messages through intracellular communication, intercellular communication and sensory systems, and introduced the concept of a message force field. As a result, we showed that the maximum entropy generation principle is valid in time evolution. Then, in order to explain life phenomena based on this principle, we modelled the living system as a nonlinear oscillator coupled by a message and derived the governing equations. The governing equations consist of two laws: one states that the systems are synchronized when the variation of the natural frequencies between them is small or the coupling strength through the message is sufficiently large, and the other states that the synchronization is broken by the proliferation of biological systems. Next, to simulate the phenomena using data obtained from observations of the temporal evolution of life, we developed an inference model that combines physics constraints and a discrete surrogate model using category theory, and simulated the phenomenon of early embryogenesis using this inference model. The results show that symmetry creation and breaking based on message force fields can be widely used to model life phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call