Abstract
Pullulan is a natural polysaccharide of potential interest for biomedical applications due to its non-toxic, non-immunogenic and biodegradable properties. The aim of this work was to synthesize cationic pullulan derivatives able to form complexes with microRNAs (miRNAs) driven by electrostatic interaction (polyplexes). Quaternized ammonium groups were linked to pullulan backbone by adding the reactive glycidyltrimethylammonium chloride (GTMAC). The presence of these cationic groups within the pullulan was confirmed by elemental analysis, Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The alkylated pullulan was able to interact with miRNA and form stable polyplexes that were characterized regarding size, zeta potential and morphology. The presence of miRNA was confirmed by agarose gel electrophoresis and UV spectrophotometry. In vitro tests on human umbilical vein endothelial cells did not show any cytotoxicity after 1day of incubation with nanosized polyplexes up to 200µg/mL. QA-pullulan was able to promote miRNA delivery inside cells as demonstrated by fluorescence microscopy images of labelled miRNA. In conclusion, the formation of polyplexes using cationic derivatives of pullulan with miRNA provided an easy and versatile method for polysaccharide nanoparticle production in aqueous media and could be a new promising platform for gene delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.