Abstract

Well defined two kinds of cationic amphiphilic block copolymers Poly(4-vinylbenzyltriethylammonium chloride)-b-Poly(styrene) are synthesized by combining reversible addition fragmentation chain transfer polymerizations and post-polymerization quaternization. Block copolymers are characterized by GPC and IHNMR. The self-assembly behaviors of the block copolymers are studied, which are characterized by TEM. For Poly(4-vinylbenzyltriethylammoniurn chloride)13-b-Poly(styrene)136, crew-cut spherical micelles are obtained by using DMF as the initial common solvent, and the majority of the pearl series aggregates and a small-amount of rod-like aggregates are all observed by using the mixture of DMF and THF as the initial common solvent. The formation process of rod-like aggregates is proposed in three steps: the micellization of copolymer chains, the formation of pearl series aggregates from the collision and fusion of individual initial spherical micelles, and the transformation from pearl series aggregates to rod-like aggregates. For Poly(4- vinylbenzyltriethylammonium chloride)18-b-Poly(styrene)370, large compound micelles and complicated spherical aggregates and small vesicles are all,obtained. The formation process of small vesicles is also proposed in three steps: the formation of initial spherical micelles with some hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) embedded in the core, the removing of the outer layer common solvent, and solvent nucleation in the center. It should be noted that solvent nucleation is critical, because of the hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) and the common solvent and water embedded in the core of the initial spherical micelles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call