Abstract

The synthesis of carboxylic acids is of fundamental importance in the chemical industry and the corresponding products find numerous applications for polymers, cosmetics, pharmaceuticals, agrochemicals, and other manufactured chemicals. Although hydroxycarbonylations of olefins have been known for more than 60 years, currently known catalyst systems for this transformation do not fulfill industrial requirements, for example, stability. Presented herein for the first time is an aqueous-phase protocol that allows conversion of various olefins, including sterically hindered and demanding tetra-, tri-, and 1,1-disubstituted systems, as well as terminal alkenes, into the corresponding carboxylic acids in excellent yields. The outstanding stability of the catalyst system (26 recycling runs in 32 days without measurable loss of activity), is showcased in the preparation of an industrially relevant fatty acid. Key-to-success is the use of a built-in-base ligand under acidic aqueous conditions. This catalytic system is expected to provide a basis for new cost-competitive processes for the industrial production of carboxylic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.