Abstract

Carbon tubes were successfully produced using microwave plasma-enhanced chemical vapor deposition on silicon, quartz, and ceramic substrates. The carbon tubes, about 80–100 nm in diameter and a few tens of microns in length, were formed under methane and hydrogen plasma at 720 °C with the aid of iron oxide particles. In this approach, an average tube density of about 109 cm−2 was obtained. The crooked and nonuniform diameters of some tubes suggested that they were composed of incompletely crystallized graphitic shells due to existing defects. The characteristic of the tubes grown upward on the silicon substrate accounted for a remarkably large electron field emission current of 0.1 mA/cm2 from the surface of the tube sample at a low turn-on field of 3 V/μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call