Abstract

Carbon nitride films were deposited by pulsed laser ablation of a graphite target under a nitrogen atmosphere at room temperature. A direct current discharge apparatus was used to supply active nitrogen species during the deposition of carbon nitride films. The composition and bonding structure of carbon nitride films were determined by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy. The incorporation of nitrogen atoms in the films is greatly improved by the using of a dc glow discharge. The ratio N/C can reach 0.34 at the discharge voltage of 400 V. Six peaks centered at 1025 cm-1, 1226 cm-1, 1381 cm-1, 1534 cm-1, 1629 cm-1, and 2200 cm-1 can be clearly distinguished from the FTIR spectra of the deposited films, which indicates the existence of C–N, C=N, and C≡N bonds. The fraction of sp2 C, C≡N bonds, and C=N bonds in the deposited films increases with increasing discharge voltage. Deconvolution results of C 1s and N 1s spectra also indicate that nitrogen atoms in the films are chemically bonded to sp1 C, sp2 C, and sp3 C atoms. Most of the nitrogen atoms are bonded to sp2 C atoms. Increasing the discharge voltage leads to a decrease of the fraction of nitrogen atoms bonded to sp2 C and the fraction of amorphous carbon; however, it leads to an increase of the fraction of nitrogen atoms bonded to sp3 C and the fraction of sp2 C and sp3 C atoms bonded to nitrogen atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.