Abstract

Plasma-enhanced chemical vapor deposition (PECVD) is widely used for the synthesis of carbon materials, such as diamond-like carbons (DLCs), carbon nanotubes (CNTs) and carbon nanowalls (CNWs). Advantages of PECVD are low synthesis temperature compared with thermal CVD and the ability to grow vertically, free-standing structures. Due to its self-supported property and high specific surface area, CNWs are a promising material for field emission devices and other chemical applications. This article reviews the recent process on the synthesis of CNW by the PECVD method. We briefly introduce the structure and properties of CNW with characterization techniques. Growth mechanism is also discussed to analyze the influence of plasma conditions, substrates, temperature, and other parameters to the final film, which will give a suggestion on parameter modulation for desired film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.