Abstract

AbstractWe report a method for the synthesis of carbon nanotubes (CNTs) by microwave irradiation. CNTs were successfully synthesized by microwave heating of the catalyst loaded on various supports such as carbon black, silica powder, or organic polymer substrates (Teflon and polycarbonate). Microwave (2.45 GHz, 800 W) irradiation used acetylene as a hydrocarbon source, and 3d transition metals and metal sulfides were used as the catalysts. Different carbon yields and morphologies were obtained depending on the reaction conditions. Fibrous nanocarbons—linear or Y‐branched—were observed as well as carbon nanoparticles and amorphous carbon. High‐resolution transmission electron microscopy (HRTEM) revealed that these fibrous nanocarbons are either multiwalled CNTs or graphitic nanofibers (GNFs). This novel method has the potential to grow CNTs virtually on any substrate provided its absorption of microwave energy is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.