Abstract

AbstractFloating catalyst chemical vapor deposition (FCCVD) has been one of the most important techniques for the synthesis of high‐quality single‐, double‐, and multi‐wall carbon nanotubes (CNTs). The method is characterized of simple processing, good controllability, and desirable scalability. The bulk morphologies of the synthesized CNTs can be sponge‐like, an array, a thin film, or fiber by simply changing the growth parameters and the way they are collected, which facilitates a wide range of applications. The authors comprehensively review the state‐of‐the‐art progress on the controlled growth of CNTs by FCCVD which have a defined number of walls, and controlled diameter, bundle size, and type of conductivity. The properties and possible applications for the CNTs and their hybrids are summarized. Finally, insights into the key challenges and prospects for CNTs synthesized by FCCVD are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.