Abstract

This paper describes an effect of flow rate, carrier gas (H2, N2 and Ar) composition, and amount of benzene on the quality and the yield of carbon nanotubes (CNTs) formed by catalytical vapour dcomposition (CVD) method. The flow and mass control of gases and precursor vapors respectively were found to be interdependent and therefore crucial in deciding the quality and yield of CNTs. We have achieved this by modified soap bubble flowmeter, which controlled the flow rates of two gases, simultaneously. With the help of this set-up, CNTs could be prepared in any common laboratory. Raman spectroscopy indicated the possibilities of formation of single-walled carbon nanotubes (SWNTs). From scanning electron microscopy (SEM) measurements, an average diameter of the tube/bundle was estimated to be about 70 nm. The elemental analysis using energy dispersion spectrum (EDS) suggested 96 at.wt.% carbon along with ca. 4 at.wt.% iron in the as-prepared sample. Maximum yield and best quality CNTs were obtained using H2 as the carrier gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call