Abstract

In this study, functionalized carbon nanotubes (CNTs) with good conductivity and high surface area are anchored with mesoporous Co3O4 nanoparticles by a facile chemical co-precipitation method. Electrochemical characterizations show that Co3O4/CNT nanocomposite delivers a capacity of 873mAhg−1 after 50 cycles at a current density of 100mAg−1. When the current density is increased to 250, 350 and 500mAg−1, it still maintains a capacity of 895, 834 and 757mAhg−1, respectively. The high capacity, rate capability and good cycling ability of Co3O4/CNT nanocomposite are attributed to the intimate interaction between the CNTs and Co3O4 nanoparticles. The CNTs not only enhance the conductivity of Co3O4 nanoparticles but also improve the structure stability of Co3O4 nanoparticles. Furthermore, the mesoporous structure of Co3O4 nanoparticles is available to the transfer of electrolyte. Our results demonstrate that CNTs reinforced Co3O4 nanocomposite could be a promising anode material for high capacity lithium-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.