Abstract

The CD@Fe3O4 photocatalysts were synthesized via hydrothermal synthesis method. The CD@Fe3O4 particles were synthesized using Fe3O4 as the core and using citric acid and ethylenediamine as a raw material, which were heated to 200 °C for 4 h. The synthesized fluorescent CD@Fe3O4 was characterized by HR-TEM, IR and fluorescence spectrophotometer. The HR-TEM results showed CD and Fe3O4 nanoparticles were uniform, mono-dispersed sphere or hemisphere particles with an average size of approximately 3 nm, and particle size of CD@Fe3O4 were mainly in range of 20–30 nm. XRD results showed the nanoparticles mainly belonged to Fe3O4 and CD@Fe3O4, which made recycling our photocatalysts possible due to the magnetic performance. On daylight lamp, the half-life of hexaconazole in CD@Fe3O4 photocatalysts was about 4 days, and it is lower than half-life (over 100 days) of hexaconazole without CD@Fe3O4 photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.