Abstract

To address the hypothesis that using a zirconia (ZrO2)/ β-tricalcium phosphate (β-TCP) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO2/β-TCP composite scaffolds with different ZrO2/β-TCP ratios, and evaluated their physical and mechanical characteristics, also the effect of three-dimensional (3D) culture (ZrO2/β-TCP scaffold) on the behavior of human endometrial stem cells. Results showed the porosity of a ZrO2/β-TCP scaffold can be adjusted from 65% to 84%, and the compressive strength of the scaffold increased from 4.95 to 6.25 MPa when the ZrO2 content increased from 30 to 50 wt%. The cell adhesion and proliferation in the ZrO2/β-TCP scaffold was greatly improved when ZrO2 decreased. Moreover, in vitro study showed that an osteoblasts-loaded ZrO2/β-TCP scaffold provided a suitable 3D environment for osteoblast survival and enhanced bone regeneration. We thus showed that a porous ZrO2/β-TCP composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed during in vivo study for treatment of large bone defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call