Abstract

The synthesis of calcium hexaboride (CaB6) powder via the reaction of calcium carbonate (CaCO3) with boron carbide (B4C) and carbon has been investigated systematically in the present study. The influences of heating temperature and holding time on the reaction products have been studied using X‐ray diffractometry, and the morphologies of CaB6 obtained at various temperatures and holding times have been investigated via scanning electron microscopy. The interaction in the CaCO3–B4C–carbon system by which CaB6 is formed is a solid‐phase process that passes through the transition phases Ca3B2O6 and CaB2C2. The optimal conditions for CaB6 synthesis are a holding time of 2.5 h at a temperature of 1673 K, under vacuum (a pressure of 10−2 Pa). CaB6 powder has the same morphology as B4C, and the properties and the shape of CaB6 powders can be improved by choosing good‐quality raw materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.