Abstract

Lanthanum manganite doped with calcium, Ca 1/3La 2/3MnO 3− δ , was prepared by a high-energy ball milling. The precursors used were Mn 2O 3, La 2O 3 and CaO, mixed in the stoichiometric ratio to obtain this manganite. The mechano-chemical process was performed at room temperature in a SPEX 8000D mixer/mill, using hardened steel balls and stainless steel vials, in air atmosphere. X-ray diffraction was used to elucidate the phase transformation as a function of the milling time. The Rietveld refinement was used in order to characterize structurally the manganites. The morphology and particle size of powder compound obtained were characterized by scanning electron microscope. The particle size of this powder material was measured with zeta size analyzer, and selected area electron diffraction (SAED) from TEM was used to elucidate the crystalline structure of this powder compound. The results showed that it is possible to obtain calcium doped lanthanum manganite by mechano-synthesis, using a weight ratio of ball to powder of 12:1, after 3 h of milling. The evolution of the phase transformation during the milling time is reported. Increases in milling time produce exponential decrease in the particle size, up to 680 nm after 1 h of milling. After the milling process it is obtained a powder compound with an orthorhombic structure (S.G. Pbnm). A prolonged milling time (>9 h) produce an important reduction in the particle size but this is accompanied with a high iron contamination caused by metallic residues originated from vial and balls and also, after 9 h of milling time, it was found an important distortion in orthorhombic structure, obtaining two types of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.