Abstract

Exquisite control over the morphology of inorganic materials is well demonstrated in biological mineralization. An elegant example is the mulluscan nacre, in which aragonite (a polymorph of calcium carbonate) forms as thin films of about 0.5|im thick between organic matrices as a result of an interplay between templating and inhibition (Figure 1). Not surprising, biomineralization has inspired many recent research efforts in biomimetic materials synthesis, especially the synthesis of inorganic thin films. The majority of these efforts have exclusively focused on exploring the promoting effect on mineral formation by templates. A major drawback of this approach is the lack of control over the mineral growth in the direction normal to the template, which often leads to the formation of discrete patches instead of a true film. In this report, we describe a strategy which takes advantage of the interplay between templating and inhibiting, as utilized by organisms, to synthesize macroscopic and continuous CaCO3 thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call