Abstract

¶Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call