Abstract

There is a continuing demand of new inhibitors of HIV-1 Integrase (HIV-1 IN) due to mutations of HIV-1. This study aims to develop the synthesis of 3,6-diaryl 7-azaindoles and introspect the role of aryl groups on the strand transfer (ST) inhibition of HIV-1 IN. An efficient and chemo-selective one-pot method is established for the synthesis of the unexplored diverse C3 → C6 diaryl 7-azaindoles starting from 6-chloro-3-iodo-N-protected 7-azaindoles. Here we report Pd2dba3/SPhos catalyzed synthesis of eight selective C3 monoaryl 7-azaindoles (10a-h) and eight C3,C6-diaryl 7-azaindoles (11a-f, 12a,b) with yields in the ranges of 67-93% and 43-88% respectively. The synthesized derivatives inhibit the strand transfer (ST) activity of HIV-1 IN enzyme at 10 μM dose with 11d and 11f exhibiting %ST inhibitions of 72% and 71%, respectively. SAR studies indicate the para-substitution on the C3 aryl ring and C6 aryl is essential for enhanced %ST inhibition. 11b,c, 11e-f, and 12b showed lower cytotoxicity (IC50 > 200 μM) against TZM-bl cells. Molecular docking of the diaryl 7-azaindoles and Raltegravir (RAL), to the PFV-integrase revealed favorable binding interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.