Abstract

The enzymatic synthesis of short-tailed alkyl glucosides is generally carried out in an aqueous-organic biphasic reaction medium with a rather low fatty alcohol concentration in the aqueous phase (where the synthesis occurs). Thus, hydrolytic reactions have a significant impact on the synthesis performance. Given this background, the use of acetone as cosolvent was studied for the synthesis of butyl-β-galactoside with Aspergillus oryzae β-galactosidase. The liquid–liquid equilibrium of the reaction mixture components (acetone/1-butanol/aqueous solution) was determined and the single- and two-phase regions were defined at 30, 40, and 50°C. It was observed that the liquid–liquid equilibrium of the ternary system acetone/1-butanol/water differs significantly from the one obtained using an aqueous solution (50 mM McIlvaine buffer pH 4.5; 5 g L–1) instead of water. This is mainly because of the salting-out effect of the buffer; nevertheless, the presence of lactose also altered the equilibrium. Having this in mind, the effects of temperature (30 and 50°C) and reaction mixture composition were assessed. Three general conditions were evaluated: single-phase ternary system (30% acetone), two-phase ternary system (10% acetone) and two-phase binary system (0% acetone). Acetone had a deleterious effect on enzyme stability at 50°C, leading to low reaction yields. However, no enzyme deactivation was detected at 30°C. Moreover, a reaction yield of 0.98 mol mol–1 was attained in the 30/50/20% (w/w) mixture of acetone/1-butanol/aqueous solution. This very high yield can be explained by the huge increase in the concentration of 1-butanol and the reduction of water activity. The synthesis was carried out using also the β-galactosidase immobilized in glyoxal-agarose and amino-glyoxal-agarose, and by aggregation and crosslinking. In the case of agarose-derived catalysts, two average particle diameters were assessed to evaluate the presence of internal mass transfer limitations. Best yield (0.88 mol mol–1) was obtained with glyoxal-agarose derivatives and the particle size had non-effect on yield. The chemical structure of butyl-β-galactoside was determined by NMR and FT-IR.

Highlights

  • Alkyl-glycosides (AGs) are a new family of non-ionic surfactants that stand out from conventional non-ionic surface agents for being biodegradable, non-toxic and hypoallergenic (Rather and Mishra, 2013)

  • The combined effect of three mass percentages of aqueous solution (20, 40, and 60%) and three mass percentages of acetone (0, 10, and 30%) were experimentally evaluated, the remaining mass percentages corresponding to 1-butanol. These conditions were chosen considering the results shown in section “Characterization of the Ternary System Acetone/1Butanol/Aqueous Solutions.”

  • The synthesis of butyl-β-galactoside was conducted at three general conditions: single-phase ternary system, two-phase ternary system and two-phase binary system (0% acetone)

Read more

Summary

Introduction

Alkyl-glycosides (AGs) are a new family of non-ionic surfactants that stand out from conventional non-ionic surface agents for being biodegradable, non-toxic and hypoallergenic (Rather and Mishra, 2013). They are synthesized from renewable raw materials, so they are a sound replacement for nonyl-phenol and its ethoxylated-derivatives (United States Environmental Protection Agency, 2012). Starchem Enterprises (China) has started the bulk production of butyl and hexyl-glucosides, marketing both as solubilizers in hard surface cleaning, especially in beer bottle cleaning and metal anti-corrosion cleaning (Starchem Enterprises Limited, 2019) This renewed interest in short-tailed AGs production opens up an opportunity for using biocatalysis and underutilized carbohydrates in the synthesis of ecofriendly surfactants

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.