Abstract

Azabicyclo[2.2.1]heptane and -[3.3.1]nonane scaffolds (X = Cl, Br) containing a pyridinyl substituent at the bridgehead position were prepared via two complementary chemical pathways, either by the transformation of a methoxy group into a synthetically valuable chlorine atom at the C-6 position of the pyridine moiety or by means of a regioselective C-6 deprotonation/halogenation process of the pyridine moiety exemplified by chlorination or bromination. These newly generated scaffolds were then engaged in Suzuki-Miyaura coupling reactions to provide α7 nicotinic ligands. Both chemical series were evaluated in vitro for their affinity at α7 nicotinic receptors, revealing nanomolar potency with significant selectivity over the α4β2 nicotinic subtype. These approaches offer a general access to these α7 nicotinic scaffolds and ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.