Abstract
A convenient synthetic approach for the preparation of uniform metallopolymer-containing hollow spheres based on 2-(methacryloyloxy)ethyl ferrocenecarboxylate (FcMA) as monomer by sequential starved feed emulsion polymerization is described. Core/shell particles consisting of a noncrosslinked poly(methyl methacrylate) core and a slightly crosslinked ferrocene-containing shell allows for the simple dissolution of core material and, thus, monodisperse metallopolymer hollow spheres are obtained. Since PFcMA is incorporated in the particle shell, herein investigated hollow spheres can be addressed by external triggers, i.e., solvent variation and redox chemistry in order to change the particle swelling capability. PFcMA-containing core/shell particles and hollow spheres are characterized by transmission electron microscope (TEM), scanning electron microscopy, cryogenic TEM, thermogravimetric analysis, and dynamic light scattering in terms of size, size distribution, hollow sphere character, redox-responsiveness, and composition. Moreover, the general suitability of prepared stimulus-responsive nanocapsules for the use in catch-release systems is demonstrated by loading the nanocapsules with malachite green as model payload followed by release studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.