Abstract
Interfacial charge separation is a fundamental and crucial process in photoelectric conversion for composite photocatalyst. In this work, the interfacial charge separation performance was investigated on a nonmetallic branched homojunction, which is fabricated through solvothermal growth of W18O49 nanofiber (as branches) onto WO3 microrods (as backbones). The ultrafast transfer of photogenerated electrons from the WO3 backbones to the W18O49 branches across the contact interface was demonstrated by a series of experiments and characterizations. The contrast experiment showed that the WO3@W18O49 homojunction exhibited superior interfacial electron transfer capacity to the BiVO4@W18O49 heterojunction, the calculated interfacial charge separation efficiency of WO3@W18O49 was 51.3%, which was more than twice as that of BiVO4@W18O49 (24.2%). Upon localized surface plasmon resonance excitation by low-energy NIR photons, the full-spectrum light driven photo-degradation for 2,4-DCP was realized. The branched structure favors the enhancement of light scattering and absorbing. Meanwhile, the homojunction structure leads to a low impedance interface and increased electric conductivity. Thus, the WO3@W18O49 exhibited an enhanced photocatalytic performance under both full-spectrum and NIR light irradiation. This work provides a promising approach to design and fabricate novel photocatalysts with full-spectrum response ability and enhanced charge separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.