Abstract
Solid-state batteries have attracted significant attention owing to their high energy density and high safety. Nevertheless, highly conductive solid electrolytes with ultrafast Li-ion mobility are greatly demanded. In this work, bromine-rich argyrodite electrolytes have been synthesized by the typical high-rotation milling followed by an annealing method. The precursor with pure argyrodite structure is first obtained and a subsequent sintering process is applied to enhance the Li-ion conductivity. Br dopant is tailored to obtain the optimum composition with the highest conductivity. Li5.6PS4.6Br1.4 electrolyte delivers a high conductivity of 6.91 mS/cm at room temperature. The solid-state battery using the pristine LiNi0.6Mn0.2Co0.2O2 cathode and Li-In anode shows a high discharge capacity of 143.4 mAh g−1 and excellent capacity retention of 92.3% after 100 cycles at 0.2C under room temperature. Moreover, the assembled all-solid-state battery also displays high discharge capacities of 156.6 mAh g−1 at 0.2C under 60 °C and 97.1 mAh g−1 at 0.02C under -20 °C. Due to the good lithium metal compatibility of Li5.6PS4.6Br1.4 electrolyte, LiNi0.6Mn0.2Co0.2O2/Li5.6PS4.6Br1.4/Li all-solid-state Li metal is successfully constructed and displays excellent performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.