Abstract

ABSTRACTPolycrystalline metal borides AlMgB14, CaB6, and MB2 (M: transition metals) were synthesized and their thermoelectric properties were examined. Single phase of orthorhombic AlMgB14, which contains B12 icosahedral clusters as building blocks, was obtained at sintering temperatures between 1573 K and 1823 K. Seebeck coefficient (α) and electrical conductivity (σ) of the phase were about 500 (μV/K) and 10−1 (1/Ωm) at room temperature, respectively. These values are comparable to those of metal-doped β- rhombohedral boron. Synthesized AlB2-type diborides (MB2; M=Ti, V, Cr, and Mn) exhibited metallic conduction. The MB2's α varied with number of valence electrons, and showed a maximum α in VB2. The variation was similar to that predicted for pseudogap system. The CaB6 also possessed metallic conduction, but the α of the phase was as large as 200 (μV/K) with negative sign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.