Abstract

Boron and nitrogen codoped carbon nanotubes (B,N-CNTs) were synthesized by floating catalyst chemical vapor deposition (FCCVD) using ethanol, ferrocene, boric acid and imidazole as carbon source, catalyst, boron and nitrogen precursors, respectively. The samples were analyzed using transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and X-ray photoemission spectroscopy. 1.5 at% B and 1.34 at% N could be doped in the resultant structure, which has higher length (few μm) with higher thermal stability (621 °C). At pressure 16 bar, hydrogen adsorption for B,N-CNTs was found to be 1.96 and 0.35 wt% at 77 K and 303 K, respectively. Hydrogen storage as function of time was also reported for both the cases. The adsorption process follow pseudo second order kinetics. The present study reveals that the codoping of CNTs aid in tuning properties of CNTs for hydrogen storage application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.