Abstract

The glycocalyx cover membrane surfaces of all living cells. These complex architectures render their interaction mechanisms on the membrane surface difficult to study. Artificial cell-sized membranes with selected and defined glycosylation patterns may serve as a minimalistic approach to systematically study cell surface glycan interactions. The development of a facile general synthetic procedure for the synthesis of BODIPY-labeled cholesterylated glycopeptides, which can coat cell-size giant unilamellar vesicles (GUVs), is described. These peptide constructs were synthesized by: 1) solid-phase peptide synthesis (SPPS) using cholesterylated Fmoc-amino acids (Fmoc=9-fluorenylmethoxycarbonyl) followed by tandem click reactions, 2) attachment of a BODIPY-bicyclononyne (BCN) (prepared by Mitsunobu chemistry via novel aryl BCN-ethers) in the absence of a catalyst, and 3) glycosylation by means of copper(I)-catalyzed click reaction of an azidoglycan. Seven different GUV-glycoforms were prepared and four of these were evaluated with their corresponding four specific anti-glycan binding lectins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.