Abstract

AbstractIn this study, blue‐emitting AlN:Eu2+ spherical phosphors were successfully synthesized for the first time by the carbothermal reduction nitridation (CRN) method, assisted with high nitrogen pressure, appropriate synthesis temperature, and the addition of CaF2. The influence of typical experimental parameters, such as N2 pressure, heating temperature, CaF2 content and Eu2+ concentration on the morphologies and luminescence properties of AlN phosphors were comprehensively investigated. The formation mechanism of spherical morphology were significantly proffered, indicating that sufficient liquid Ca‐aluminates during the AlN growth stage were essential for the spheroidization process under the action of surface tension. The synthesized AlN:Eu2+ spherical phosphors presented an intense blue emission band centered in the range of 427‐ 476 nm relative to the reaction temperature. The lifetime of AlN:Eu2+ phosphor was calculated to be around 1.89 μs. The temperature‐dependent PL spectra suggested that the emission band did not shift until 225°C. In addition, the spectral analysis strongly suggested that the luminescence property of AlN:Eu2+ phosphors was significantly enhanced by the large particle size, spherical morphology, reduced impurity content, and appropriate Eu2+ concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call