Abstract

ABSTRACTThe demand of stretchability for a semiconducting polymer has increased to realize wearable devices and sensors. However, studies involving intrinsically stretchable π‐conjugated polymers are still limited. Here, we develop a soft‐polythiophene derivative, P3SiHT, with a trisiloxane unit in the side chains via a hexylene spacer unit. In addition, diblock (P3HT‐b‐P3SiHT) and triblock (P3HT‐b‐P3SiHT‐b‐P3HT) copolymers could be synthesized based on Kumada catalyst‐transfer polycondensation. The results of atomic force microscopy and grazing incidence small‐angle X‐ray scattering indicate that the block copolymer thin films form a phase‐separated structure between the P3HT and P3SiHT domains. The organic thin film transistor devices were prepared to assess the electrical properties of the block polymers. As a result, the block copolymers showed comparable or even higher hole mobility than that of P3HT homopolymer, thus due to the enhanced phase‐separation and thereby charge transportation. The mechanical test of the bulk films indicates that P3HT‐b‐P3SiHT‐b‐P3HT shows lower tensile modulus and longer elongation at break than P3HT homopolymer and other diblock copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1787–1794

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.