Abstract

ABSTRACTPolyurethanes (PUs) are the most widely used polymers because of their biocompatibility, tunable mechanical properties, and chemical versatility. In this study, a two‐step condensation polymerization of polycaprolactone diol and hexamethylene diisocyanate was carried out, and a glutamic acid ester derivative, (2S)‐bis(2‐hydroxypropyl) 2‐aminopentane dioate (HPAP), was used as a new chain extender to accelerate the biodegradation properties of PU. HPAP was synthesized by the Fischer esterification of l‐glutamic acid. The chemical structure of HPAP was confirmed by high‐resolution mass spectroscopy and m/z (EI) was found to be 264.1447 [calculated value = 264.1443 for C11H21NO6 (M+)]. The Berry plot of static light‐scattering measurements showed that PU–HPAP had a weight‐average molecular weight and radius of gyration of 33,100 g/mol and 1420 nm, respectively. The presence of HPAP in the PU structure facilitated hydrogen bonding between the polymer chains and increased the glass‐transition temperature from −56 °C (PU) to −50 °C (PU–HPAP). PU–HPAP showed the highest hydrophilicity and surface free energy among all of samples, and this accelerated the in vitro biodegradation period via surface erosion. In addition, PU–HPAP did not show any cytotoxic effects on the L929 cells. A new biodegradable and biocompatible PU–HPAP was obtained as candidate for tissue engineering applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45764.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.