Abstract

An environmentally-benign, efficient and inexpensive high-surface-area barium hexa-aluminate (BaAl12O19, BHA) was developed as a catalyst for the decarboxylation of the biomass-derived itaconic acid (IA) to bio-based methacrylic acid (MAA). A maximal 50% final yield of MAA with a high product selectivity was obtained under relatively mild synthesis reaction conditions (250 °C; 20 bar N2). The reported selective MAA production was elevated, operating process characteristics were significantly less harsh, and no depleting critical raw materials were utilized when paralleled to the procedures with alkaline mineral bases, noble metal-containing heterogeneous catalysis systems and unrenewable feed resources (e.g. isobutene), applied previously. It was found that the doping of palladium on BHA support (Pd@BHA) did not improve MAA productivity. The effect of the time (25–300 min), temperature (175–275 °C), pressure (10–40 bar), reacting substrate concentration (0.10–0.19 mol L–1), metallic oxide mass (0.5–3.0 g) and type on IA conversion, MAA content MAA content and rates was determined, examining also recyclability. BHA catalyst was characterized with various structural techniques, such as energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), CO2 temperature-programmed desorption (TPD), scanning electron microscopy (SEM) and N2 physisorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call