Abstract

Titania (TiO2) nanofibres with controllable diameters have been successfully fabricated in situ on a Ti–6Al–4 V substrate by a thermal oxidation process. Their morphology, elemental composition, crystal structure, surface roughness and surface wettability were characterized by field-emission scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray diffractometer, atomic force microscope and contact angle goniometer. The results showed that the diameter of the resulting TiO2 nanofibres can be controlled within the range of 45–65 nm by changing the flow rate of argon gas. The results of material characterization studies revealed that TiO2 nanofibres with smaller diameter possessed greater surface roughness and hydrophilicity, as well as the degree of crystallinity. Therefore, we envisage that such surfaces can be ideally used as biomedical implants for size-dependent cellular response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.