Abstract

A series of nine new 2,3-disubstituted 4(3H)-quinazolin-4-one derivatives was furnished starting from the 2-propyl-4(3H)-quinazo-line-4-one (2). The reinvestigation of the key starting quinazolinone 2 was performed under microwave irradiation (MW) and solvent-free conditions. Combination of MW and phase-transfer catalysis using tetrabutylammonium benzoate (TBAB) as a novel neutral ionic catalyst was used for carrying out N-alkylation and condensation reactions of compound 2 as a simple, efficient and eco-friendly technique. The structure of the synthesized compounds was elucidated using different spectral and chemical analyses. In vitro antimicrobial activity of the compounds was investigated against four bacterial and two fungal strains; very modest activity was achieved. Some of the synthesized compounds were screened for their antitumor activity against different human tumor cell lines. The screened compounds exhibited a significant antitumor activity on some of the cancer cell lines, melanoma (SK-MEL-2), ovarian cancer (IGROV1), renal cancer (TK-10), prostate cancer (PC-3), breast cancer (MCF7) and colon cancer (HT29). The most active, even more active than the reference 5-fluorouracil, were found to be ethyl 4-[(4-oxo-2-propylquinazolin-3(4H)-yl)methyl]benzoate (3c), 3-{2-[6-(pyrrolidin-1-yl-sulfonyl)-1,2,3,4-tetrahydroquinoline]-2-oxoethyl}-2-propylquinazolin--4(3H)-one (3e), N'-[(E)-(2H-1,3-benzodioxo-5-yl)methylidene]-2-(4-oxo-2-propylquinazolin-3(4H)-yl)acetohydrazide (10a), N'-[(E)-(4-hydroxyphenyl)methylidene]-2-(4-oxo-2-propylquinazo-lin-3(4H) -yl)acetohydrazide (10b) and N'-[(E)-(4-nitrophenyl)methyl idene]-2-(4-oxo-2-propylquinazolin-3(4H)-yl)acetohydrazide (10c).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.