Abstract

In this study the laser photolysis of the mixtures containing vapors of various hydrocarbons and iron pentacarbonyl was implemented to nanoparticle formation. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under UV radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. The growth process of the nanoparticles was observed by a method of laser light extinction. Laser induced incandescence technique was applied for particle sizing during the process of their formation. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle size distribution was measured by statistical treatment of microphotographs. The elemental analysis by energy-dispersive x-ray spectroscopy and electron diffraction pattern gave the composition and structure of nanoparticles. The core–shell iron−carbon nanoparticles were synthesized by joint laser photolysis of iron pentacarbonyl with benzene and acetylene. The photolysis of the mixtures of toluene, butanol and methane with iron pentacarbonyl revealed in a pure iron particles formation which fast oxidized in air when were extracted out of the reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.