Abstract

Herein, binary and ternary MOF/carbon based composites (MOF/Carbon nitride/Graphene oxide) (novel binary (NH2-MIL-88B(Fe)/g-C3N4) (MOF/Carbon nitride) and ternary (NH2-MIL-88B(Fe)/g-C3N4/GO) (MOF/Carbon nitride/Graphene oxide) composites) were synthesized and used as photocatalysts for the elimination of Direct Red 23 (D-Red23) and Tetracycline Hydrochloride (TC-H). NH2-MIL-88B(Fe)/g-C3N4/GO (MILB/g/GO) ternary composites with three different amounts of GO including 3, 7, and 11 ​wt% were synthesized and denoted as MILB/g/(3%)GO, MILB/g/(7%)GO, and MILB/g/(11%)GO. g-C3N4 and GO (with three different amounts 3, 7, and 11 ​wt%) were incorporated to synthesize MILB/g/(3%)GO, MILB/g/(7%)GO and MILB/g/(11%)GO ternary composites. Several analyses were used to characterize the materials. The MILB/g/(3%)GO demonstrated the highest pollutant degradation efficiency. The degradation rate of dye and Tetracycline after 70 ​min of light radiation using MILB/g/(3%)GO in a photo-Fenton-like reaction was about 99% and 96%, respectively. The creation of a heterojunction structure using g-C3N4, and the simultaneous incorporation of the optimum amount of GO led to a remarkable amelioration in photocatalytic properties and the extraordinary performance of MILB/g/(3%)GO in the pollutants degradation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.